Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Nat Commun ; 11(1): 4938, 2020 10 02.
Article in English | MEDLINE | ID: covidwho-811574

ABSTRACT

Antiviral strategies to inhibit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and the pathogenic consequences of COVID-19 are urgently required. Here, we demonstrate that the NRF2 antioxidant gene expression pathway is suppressed in biopsies obtained from COVID-19 patients. Further, we uncover that NRF2 agonists 4-octyl-itaconate (4-OI) and the clinically approved dimethyl fumarate (DMF) induce a cellular antiviral program that potently inhibits replication of SARS-CoV2 across cell lines. The inhibitory effect of 4-OI and DMF extends to the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism. In addition, 4-OI and DMF limit host inflammatory responses to SARS-CoV2 infection associated with airway COVID-19 pathology. In conclusion, NRF2 agonists 4-OI and DMF induce a distinct IFN-independent antiviral program that is broadly effective in limiting virus replication and in suppressing the pro-inflammatory responses of human pathogenic viruses, including SARS-CoV2.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Dimethyl Fumarate/agonists , NF-E2-Related Factor 2/metabolism , Pneumonia, Viral/drug therapy , Succinates/agonists , Adult , Antioxidants/pharmacology , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/virology , Dimethyl Fumarate/pharmacology , Female , Gene Expression , Gene Knockdown Techniques , Humans , Interferon Type I , Lung/pathology , Male , NF-E2-Related Factor 2/genetics , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Signal Transduction/drug effects , Succinates/pharmacology , Virus Replication/drug effects
3.
Front Immunol ; 11: 1606, 2020.
Article in English | MEDLINE | ID: covidwho-649874

ABSTRACT

Coronavirus disease-19 (COVID-19) describes a set of symptoms that develop following infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Whilst COVID-19 disease is most serious in patients with significant co-morbidities, the reason for healthy individuals succumbing to fulminant infection is largely unexplained. In this review, we discuss the most recent findings in terms of clinical features and the host immune response, and suggest candidate immune pathways that may be compromised in otherwise healthy individuals with fulminating COVID-19. On the basis of this early knowledge we reason a potential genetic effect on host immune response pathways leading to increased susceptibility to SARS-CoV-2 infection. Understanding these pathways may help not only in unraveling disease pathogenesis, but also in suggesting targets for therapy and prophylaxis. Importantly such insight should instruct efforts to identify those at increased risk in order to institute preventative measures, such as prophylactic medication and/or vaccination, when such opportunities arise in the later phases of the current pandemic or during future similar pandemics.


Subject(s)
Betacoronavirus , Coronavirus Infections , Genetic Predisposition to Disease , Pandemics , Pneumonia, Viral , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL